跳转至

第四章 不定积分

知识点

不定积分的概念

  • 原函数:设 \(f(x)\) 在区间 \(I\) 上有定义,若存在可导函数 \(F(x)\) 满足 \(\forall x\in I,F'(x)=f(x)\),则称 \(F(x)\)\(f(x)\) 在区间 \(I\) 上的一个原函数。

    原函数的存在性-不定积分的可积
    • 连续函数一定存在原函数。(非连续函数也可能有原函数)

    • 含第一类间断点的函数,不存在原函数。(含第二类间断点的函数,可能存在原函数。如 \(F(x)=\begin{cases}x^2\sin\frac 1 x&(x\neq 0)\\0&(x=0)\end{cases}\),设 \(f(x)=F'(x)\),则 \(x=0\)\(f(x)\) 的第二类间断点,但其存在原函数 \(F(x)\)

  • 不定积分:\(f(x)\) 的所有原函数组成的集合称为 \(f(x)\) 的不定积分,记作 \(\int f(x)\text dx\)。若 \(F'(x)=f(x)\),则 \(\int f(x)\text dx=F(x)+C\),其中,\(f(x)\) 称为被积函数,\(f(x)\text dx\) 称为被积表达式,\(x\) 称为积分变量,\(C\) 称为积分常数,\(\int\) 称为不定积分号。

  • 不定积分的性质

    \(f(x),g(x)\) 在区间 \(I\) 上存在原函数 \(F(x),G(x)\),则

    • \([\int f(x)\text dx]'=f(x)\)
    • \(\int F'(x)\text dx=F(x)+C\)
    • \(\int [f(x)+g(x)]\text dx=\int f(x)\text dx+\int g(x)\text dx\)
    • \(\int kf(x)\text dx=k\int f(x)\text dx\)
  • 基本积分

    \(\int \text dx=x+C\)

    \(\int x^{\alpha}\text dx=\frac{x^{\alpha +1}}{\alpha+1}+C\,(\alpha\neq -1)\)\(\int \frac 1 x \text dx=\ln |x|+C\)\(\int a^x\text dx=\frac{a^x}{\ln a}+C\,(a>0,a\neq 1)\)\(\int e^x\text dx=e^x+C\)

    \(\int \cos x\text dx=\sin x+C\)\(\int \sin x\text dx=-\cos x+C\)\(\int \sec^2 x\text dx=\tan x+C\)\(\int \sec x\tan x\text dx=\sec x+C\)\(\int \csc^2 x\text dx=-\cot x+C\)\(\int \csc x\cot x\text dx=-\csc x+C\)

    \(\int \frac{\text dx}{\sqrt{1-x^2}}=\arcsin x+C\)\(-\arccos x+C\)\(\int \frac{\text dx}{1+x^2}=\arctan x+C\)\(-\text{arccot }x+C\)

    \(\int \text{sinh }x\text dx=\text{cosh }x+C\)\(\int \text{cosh }x\text dx=\text{sinh }x+C\)

    例题-直接积分法

    计算:(1)\(\int \dfrac{x^3+3x^2+x-3}{x^2+1}\text dx\);(2)\(\int (e^{2x}\pi^x)\text dx\);(3)\(\int \sqrt{x\sqrt[3]{x^2}}\text dx\)

    解答

    (1)\(=\int \dfrac{(x^3+x)+(3x^2+3)-6}{x^2+1}\text dx=\int (x+3-\dfrac 6 {x^2+1})\text dx=\dfrac 1 2 x^2+3x-6\arctan x+C\)

    (2)\(=\int (e^2\pi)^x\text dx=\dfrac{(e^2\pi)^x}{\ln(e^2\pi)}+C\)

    (3)\(=\int x^{\frac 5 6}\text dx=\dfrac 6 {11} x^{\frac {11} 6}+C\)

    计算:(1)\(\int \sin^2\frac x 2\text dx\)\(\int \dfrac{1}{\sin^2 x\cos^2 x}\text dx\);(3)\(\int \tan^2 x\text dx\)

    解答

    (1)\(=\int \dfrac{1-\cos x}2\text dx=\dfrac 1 2 (x-\sin x)+C\)

    (2)\(=\int\dfrac{\sin^2 x+\cos^2 x}{\sin^2 x\cos^2 x}\text dx=\int \sec^2 x\text dx+\int \csc^2 x\text dx=\tan x-\cot x+C\)

    (3)\(=\int (\sec^2 x-1)\text dx=\tan x-x+C\)

    分段函数的积分:注意 \(F(x)\) 可导 \(\Rightarrow\) \(F(x)\) 连续

    \(f(x)=\begin{cases}\cos x-x^2+1&(x\leq 0)\\2e^x&(x>0)\end{cases}\),求:\(\int f(x)\text dx\)

    解答

    由于 \(f(x)\)\((-\infty,+\infty)\) 上连续,则 \(f(x)\) 的原函数存在。

    • \(x\leq 0\) 时,\(\int f(x)\text dx=\int (\cos x-x^2+1)\text dx=\sin x-\dfrac 1 3 x^3+x+C_1\)
    • \(x>0\) 时,\(\int f(x)\text dx=\int 2e^x\text dx=2e^x+C_2\)

    \(F(x)=\begin{cases}\sin x-\frac 1 3 x^3+x+C_1&(x\leq 0)\\2e^x+C_2&(x>0)\end{cases}\)

    由于 \(F(x)\)可导,故 \(F(x)\)\((-\infty,+\infty)\) 上连续。而 \(F(0-0)=C_1\)\(F(0+0)=2+C_2\),则 \(C_1=C_2+2\)

    \(F(x)=\begin{cases}\sin x-\frac 1 3 x^3+x+C+2&(x\leq 0)\\2e^x+C&(x>0)\end{cases}\)

    注意

    分段函数的积分,要确保原函数在分界点处的连续性。

不定积分的几种基本方法

  • 凑微分法(第一换元法)

    \(F(u)\) 可导,\(F'(u)=f(u)\)\(u=\varphi(x)\) 可导,则 \(\int f(\varphi(x))\varphi'(x)\text dx=\int f(\varphi(x))\text d(\varphi(x))=F(\varphi(x))+C\)

    证明

    由于 \([F(\varphi(x))]'=F'(\varphi(x))\varphi'(x)=f(\varphi(x))\varphi'(x)\),所以 \(\int f(\varphi(x))\varphi'(x)\text dx=F(\varphi(x))+C\)

    常见的凑微分公式

    \(\text dx=\frac 1 a \text d(ax+b)\,(a\neq 0)\)\(e^x\text dx=\text d(e^x)\)\(\frac {\text dx} x=\text d(|\ln x|)\)

    \(x\text dx=\frac 1 2 \text d(x^2)=\frac 1 2 \text d(x^2\pm a^2)=-\frac 1 2 \text d(a^2-x^2)\)

    \(\sin x\text dx=-\text d(\cos x)\)\(\cos x\text dx=\text d(\sin x)\)\(\sec^2 x\text dx=\text d(\tan x)\)\(\sec x\tan x\text dx=\text d(\sec x)\)

    \(\frac{\text dx}{1+x^2}=\text d(\arctan x)\)\(\frac{\text dx}{\sqrt{1-x^2}}=\text d(\arcsin x)\)

    \(\frac{\text dx}{2\sqrt x}=\text d(\sqrt x)\)\(\frac{x}{\sqrt{a^2\pm x^2}}\text dx=\frac{\text d(x^2)}{2\sqrt{a^2\pm x^2}}=\pm \text d(\sqrt{a^2\pm x^2})\)

    \(\int \frac{\text dx}{ax+b}=\frac 1 a \ln|ax+b|+C\,(a\neq 0)\)

    \(\int \frac{\text dx}{x^2-a^2}=\frac 1 {2a}\ln|\frac{x-a}{x+a}|+C\)\(\int \frac{\text dx}{x^2+a^2}=\frac 1 a\arctan \frac x a+C\)\(\int \frac{\text dx}{\sqrt{a^2-x^2}}=\arcsin \frac x a+C\,(a>0)\)

    证明

    \(\int \dfrac{\text dx}{x^2-a^2}=\dfrac 1 {2a}\int (\dfrac 1 {x-a}-\dfrac 1{x+a})\text dx=\dfrac 1 {2a}\ln|\dfrac{x-a}{x+a}|+C\)

    \(\int \dfrac{\text dx}{x^2+a^2}=\dfrac 1 {a^2}\cdot a\cdot \int \dfrac{\text d(\frac x a)}{(\frac x a)^2+1}=\dfrac 1 a \arctan \dfrac x a+C\)

    \(\int \dfrac{\text dx}{\sqrt{a^2-x^2}}=\dfrac 1 a\cdot a\cdot \int \dfrac{\text d(\frac x a)}{\sqrt{1-(\frac x a)^2}}=\arcsin \dfrac x a+C\)

    \(\int \tan x\text dx=-\ln|\cos x|+C\)\(\int \cot x\text dx=\ln|\sin x|+C\)

    证明

    \(\int \tan x\text dx=\int \dfrac{\sin x}{\cos x}\text dx=-\int \dfrac{\text d(\cos x)}{\cos x}=-\ln |\cos x|+C\)

    \(\int \cot x\text dx=\int \dfrac{\cos x}{\sin x}\text dx=\int\dfrac{\text d(\sin x)}{\sin x}=\ln|\sin x|+C\)

    \(\int \sec x\text dx=\ln|\sec x+\tan x|+C=-\ln|\sec x-\tan x|+C\)

    \(\int \csc x\text dx=\ln|\csc x-\cot x|+C=-\ln|\csc x+\cot x|+C\)

    证明
    • 法 1:

      \(=\int \dfrac {\text dx}{\cos x}=\int \dfrac{\cos x\text dx}{\cos^2 x}=\int \dfrac{\text d(\sin x)}{1-\sin^2 x}=\dfrac 1 2 \ln\dfrac{1+\sin x}{1-\sin x}+C\)

      注:\(\dfrac 1 2 \ln\dfrac{1+\sin x}{1-\sin x}=\dfrac 1 2 \ln\dfrac{(1+\sin x)^2}{1-\sin^2 x}=\ln\dfrac{1+\sin x}{\cos x}=\ln|\sec x+\tan x|\)

    • 法 2:

      \(=\int \dfrac{\text dx}{\sin(x+\frac{\pi}2)}=\int \dfrac{\text dx}{2\sin (\frac x 2+\frac{\pi}4)\cos(\frac x 2+\frac{\pi}4)}=\int \dfrac{\sec^2 (\frac x 2 +\frac{\pi}4)\text d(\frac x 2+\frac{\pi}4)}{\tan (\frac x 2+\frac{\pi}4)}=\ln|\tan(\frac x 2+\frac{\pi}4)|+C\)

    • 法 3:

      \(=\int\dfrac{\sec x(\sec x+\tan x)}{\sec x+\tan x}\text dx=\int \dfrac{\text d(\sec x+\tan x)}{\sec x+\tan x}=\ln|\sec x+\tan x|+C\)

    \(\int\frac{\text dx}{\sqrt{x^2+a^2}}=\ln(x+\sqrt{x^2+a^2})+C\,(a>0)\)\(\int \frac{\text dx}{\sqrt{x^2-a^2}}=\ln|x+\sqrt{x^2-a^2}|+C\,(a>0)\)

    证明
    • \(x=a\tan t\),则 \(\text dx=a\sec^2 t\text dt\)

      \(\int \dfrac{1}{\sqrt{x^2+a^2}}\text dx=\int \dfrac{1}{a\sec t}\cdot a\sec^2 t\text dt=\int \sec t\text dt=\ln|\sec x+\tan x|+C=\ln|\dfrac x a +\dfrac{\sqrt{x^2+a^2}}a|+C=\ln(x+\sqrt{x^2+a^2})+C\)

    • \(x=a\sec t\),则 \(\text dx=a\sec t\tan t\text dt\)

      \(\int \dfrac 1 {\sqrt {x^2-a^2}}\text dx=\int \dfrac{1}{a\tan t}\cdot a\sec t\tan t\text dt=\int \sec t\text dt=\ln|\sec t+\tan t|+C=\ln|\dfrac x a+\dfrac{\sqrt{x^2-a^2}}a|+C=\ln|x+\sqrt{x^2-a^2}|+C\)

    \(\int \sqrt{a^2-x^2}\text dx=\frac x 2\sqrt{a^2-x^2}+\frac{a^2}2\arcsin\frac x a+C\,(a>0)\)

    证明

    \(x=a\sin t\),则 \(\text dx=a\cos t\text dt\)

    \(\int \sqrt{a^2-x^2}\text dt=\int a\cos t\text a\cos t\text dt=a^2\int \cos^2 t\text dt=\dfrac{a^2}2\int (1+\cos 2t)\text dt=\dfrac{a^2}2(t+\dfrac 1 2 \sin 2t)+C=\dfrac{a^2}2t+\dfrac{a^2}2\sin t\cos t+C=\dfrac{a^2}2\arcsin \dfrac x a+\dfrac x 2 \sqrt{a^2-x^2}+C\)

    \(\int \sqrt{x^2\pm a^2}\text dx=\frac x 2\sqrt{x^2\pm a^2}+\frac{a^2}2\ln(x+\sqrt{x^2\pm a^2})+C\,(a>0)\)

    \(\int \sec^3 x\text dx=\frac 1 2\sec x\tan x+\frac 1 2\ln|\sec x+\tan x|+C\)

    例题

    计算:(1)\(\int \sin^2 x\cos x\text dx\);(2)\(\int \dfrac{e^x}{1+e^{2x}}\text dx\);(3)\(\int \dfrac{x}{1+x^2}\text dx\);(4)\(\int (2x-1)^{2024}\text dx\);(5)\(\int \dfrac{x+\arcsin x}{\sqrt{1-x^2}}\text dx\)

    解答

    (1)\(=\int \sin^2 x\text d(\sin x)=\dfrac 3 \sin^3 x+C\)

    (2)\(=\int \dfrac{\text d(e^x)}{1+(e^x)^2}=\arctan e^x+C\)

    (3)\(=\int \dfrac{\text d(1+x^2)}{1+x^2}=\dfrac 1 2\ln(1+x^2)+C\)

    (4)\(=\dfrac 1 2 \int (2x-1)^{2024}\text d(2x-1)=\dfrac 1 {4050}(2x-1)^{2025}+C\)

    (5)\(=\int \dfrac{x}{\sqrt{1-x^2}}\text dx+\int\dfrac{\arcsin x}{\sqrt{1-x^2}}\text dx=-\dfrac 1 2 \int\dfrac{\text d(1-x^2)}{\sqrt{1-x^2}}+\int \arcsin x\text d(\arcsin x)=-\sqrt{1-x^2}+\dfrac 1 2 (\arcsin x)^2+C\)

    计算:\(\int \dfrac{\text dx}{a^2\sin^2 x+b^2\cos^2 x}\,(ab\neq 0)\)

    解答

    \(=\int \dfrac{1}{\cos^2 x}\cdot \dfrac{\text dx}{a^2\tan^2 x+b^2}=\int \dfrac{\text d(\tan x)}{a^2\tan^2 x+b^2}=\dfrac 1 {b^2}\cdot \dfrac b a\cdot \int \dfrac{\text d(\frac a b \tan x)}{(\frac a b\tan x)^2 x+1}=\dfrac 1 {ab}(\arctan \dfrac a b \tan x)+C\)

    计算:\(\int \dfrac{\sin x}{a\cos x+b\sin x}\text dx\,(a^2+b^2\neq 0)\)

    解答

    \(I=\int \dfrac{\sin x}{a\cos x+b\sin x}\text dx\)\(J=\int \dfrac{\cos x}{a\cos x+b\sin x}\text dx\),则:

    \(\begin{cases}bI+aJ=\int \dfrac{b\sin x+a\cos x}{a\cos x+b\sin x}\text dx=x+C\\-aI+bJ=\int \dfrac{-a\sin x+b\cos x}{a\cos x+b\sin x}\text dx=\int \dfrac{\text d(a\cos x+b\sin x)}{a\cos x+b\sin x}=\ln|a\cos x+b\sin x|+C\end{cases}\)

    \(\Rightarrow \begin{cases}I=\dfrac{1}{a^2+b^2}(bx-a\ln|a\cos x+b\sin x|)+C\\J=\dfrac{1}{a^2+b^2}(ax+b\ln |a\cos x+b\sin x|)+C\end{cases}\)

    注:实际上,就是以 \((a\cos x+b\sin x)\)\((a\cos x+b\sin x)'\) 为基张成空间 \(V\),将向量 \(\sin x,\cos x\) 表示为 \((a\cos x+b\sin x)\)\((a\cos x+b\sin x)'\) 的线性组合。\(\sin x=k_1(a\cos x+b\sin x)+k_2(a\cos x+b\sin x)'\)\(\cos x=l_1(a\cos x+b\sin x)+l_2(a\cos x+b\sin x)'\)

  • 变量代换法(第二换元法)

    \(f(x)\) 连续,\(x=\varphi(t)\) 有连续导数,且 \(\varphi'(t)\neq 0\),若 \(\int f(\varphi(t))\varphi'(t)\text dt=F(t)+C\),则 \(\int f(x)\text dx=\int f(\varphi(t))\varphi'(t)\text dt=F(t)+C=F(\varphi^{-1}(x))+C\),其中 \(t=\varphi^{-1}(x)\)\(x=\varphi(t)\) 的反函数。

    证明

    \(\dfrac{\text d}{\text dx}F(\varphi^{-1}(x))=\dfrac{\text d}{\text dt}F(t)\cdot \dfrac{\text dt}{\text dx}=f(\varphi(t))\varphi'(t)\cdot \dfrac{1}{\varphi'(t)}=f(\varphi(t))=f(x)\)

    例题

    计算:(1)\(\int \dfrac{\text dx}{1+\sqrt{x+1}}\);(2)\(\int \dfrac{x}{\sqrt{x-1}}\text dx\)

    解答

    (1)设 \(\sqrt{x+1}=t\),则 \(x=t^2-1\)\(\text dx=2t\text dt\)\(I=\int \dfrac{2t\text dt}{1+t}=2\int (1-\dfrac{1}{t+1})\text dt=2t-2\ln|t+1|+C=2\sqrt{x+1}-2\ln(\sqrt{x+1}+1)+C\)

    (2)设 \(\sqrt{x-1}=t\),则 \(x=t^2+1\)\(\text dx=2t\text dt\)\(I=\int \dfrac{t^2+1}t\cdot 2t\text dt=2\int (t^2+1)\text dt=\dfrac 2 3 t^3+2t+C=\dfrac 2 3 (x-1)^{\frac 3 2}+2\sqrt{x-1}+C\)

    计算:\(\int \dfrac{\text dx}{e^x+1}\)

    解答
    • 法 1:

      \(I=\int \dfrac{e^x\text dx}{e^x(e^x+1)}=\int (\dfrac 1 {e^x}-\dfrac 1 {e^x+1})\text d(e^x)=x-\ln(e^x+1)+C\)

    • 法 2:

      \(e^x=t\),则 \(x=\ln t\)\(\text dx=\dfrac 1 t\text dt\)

      \(I=\int \dfrac{\frac 1 t \text dt}{t+1}=\int (\dfrac 1 t-\dfrac 1 {t+1})\text dt=\ln t-\ln (t+1)+C=x-\ln(e^x+1)+C\)

    计算:(1)\(\int \dfrac 1 {\sqrt{1+e^x}}\text dx\);(2)\(\int \sqrt{1+e^x}\text dx\)

    解答

    \(\sqrt{1+e^x}=t\),则 \(x=\ln(t^2-1)\)\(\text dx=\dfrac{2t}{t^2-1}\text dt\)

    (1)\(=\int \dfrac 1 t\cdot \dfrac{2t}{t^2-1}\text du=\int (\dfrac 1 {t-1}-\dfrac 1 {t+1})\text du=\ln|\dfrac{t-1}{t+1}|+C=\ln\dfrac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)

    (2)\(=\int u\cdot \dfrac{2u}{u^2-1}\text du=2\int(1+\dfrac{1}{u^2-1})\text du=2\int (1+\dfrac 1 2 (\dfrac 1 {u-1}-\dfrac 1 {u+1}))\text du=2u+\ln|\dfrac{u-1}{u+1}|+C=2\sqrt{1+e^x}+\ln\dfrac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}+C\)

    计算:\(\int \dfrac{\text dx}{x^2\sqrt{x^2-1}}\)

    解答
    • 法 1:(三角变换)

      \(x=\sec t\),则 \(\text dx=\sec t\tan t\text dt\)

      \(I=\int \dfrac{\sec t\tan t\text dt}{\sec^2 t\tan t}=\int \cos t \text dt=\sin t+C=\dfrac{\sqrt{x^2-1}}x+C\)

    • 法 2:(倒数变换)

      \(x=\dfrac 1 t\),则 \(\text dx=-\dfrac{\text dt}{t^2}\)

      \(I=\int \dfrac{t^3}{\sqrt{1-t^2}}\cdot (-\dfrac 1 {t^2}\text dt)=-\int \dfrac{t}{\sqrt{1-t^2}}\text dt=\sqrt{1-t^2}+C=\dfrac{\sqrt{x^2-1}}x+C\)

  • 分部积分法

某些特殊类型函数的不定积分

  • 有理函数的不定积分
  • 三角函数有理式的不定积分
  • 某些无理函数的不定积分